skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Nedelcu, Aurora M"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. During the evolution of multicellularity, the unit of selection transitions from single cells to integrated multicellular cell groups, necessitating the evolution of group-level traits such as somatic differentiation. However, the processes involved in this change in units of selection are poorly understood. We propose that the evolution of soma in the volvocine algae included an intermediate step involving the plastic development of somatic-like cells. We show thatEudorina elegans,a multicellular volvocine algae species previously thought to be undifferentiated, can develop somatic-like cells following environmental stress (i.e. cold shock). These cells resemble obligate soma in closely related species. We find that somatic-like cells can differentiate directly from cold-shocked cells. This differentiation is a cell-level trait, and the differentiated colony phenotype is a cross-level by-product of cell-level processes. The offspring of cold-shocked colonies also develop somatic-like cells. Since these cells were not directly exposed to the stressor, their differentiation was regulated during group development. Consequently, they are a true group-level trait and not a by-product of cell-level traits. We argue that group-level traits, such as obligate somatic differentiation, can originate through plasticity and that cross-level by-products may be an intermediate step in the evolution of group-level traits. 
    more » « less
    Free, publicly-accessible full text available March 19, 2026
  2. The evolutionary transition from single-celled to multicellular individuality requires organismal fitness to shift from the cell level to a cell group. This reorganization of fitness occurs by re-allocating the two components of fitness, survival and reproduction, between two specialized cell types in the multicellular group: soma and germ, respectively. How does the genetic basis for such fitness reorganization evolve? One possible mechanism is the co-option of life history genes present in the unicellular ancestors of a multicellular lineage. For instance, single-celled organisms must regulate their investment in survival and reproduction in response to environmental changes, particularly decreasing reproduction to ensure survival under stress. Such stress response life history genes can provide the genetic basis for the evolution of cellular differentiation in multicellular lineages. The regA-like gene family in the volvocine green algal lineage provides an excellent model system to study how this co-option can occur. We discuss the origin and evolution of the volvocine regA-like gene family, including regA—the gene that controls somatic cell development in the model organism Volvox carteri. We hypothesize that the co-option of life history trade-off genes is a general mechanism involved in the transition to multicellular individuality, making volvocine algae and the regA-like family a useful template for similar investigations in other lineages. 
    more » « less